Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2725, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302601

RESUMO

Microalgal lipids are precursors to the production of biodiesel, as well as a source of valuable dietary components in the biotechnological industries. So, this study aimed to assess the effects of nutritional (nitrogen, and phosphorus) starvations and salinity stress (NaCl) on the biomass, lipid content, fatty acids profile, and predicted biodiesel properties of green microalga Monoraphidium braunii. The results showed that biomass, biomass productivity, and photosynthetic pigment contents (Chl. a, b, and carotenoids) of M. braunii were markedly decreased by nitrogen and phosphorus depletion and recorded the maximum values in cultures treated with full of N and P concentrations (control, 100%). These parameters were considerably increased at the low salinity level (up to 150 mM NaCl), while an increasing salinity level (up to 250 mM NaCl) reduces the biomass, its productivity, and pigment contents. Nutritional limitations and salt stress (NaCl) resulted in significantly enhanced accumulation of lipid and productivity of M. braunii, which represented more than twofold of the control. Furthermore, these conditions have enhanced the profile of fatty acid and biodiesel quality-related parameters. The current study exposed strategies to improve M. braunii lipid productivity for biodiesel production on a small scale in vitro in terms of fuel quality under low nutrients and salinity stress.


Assuntos
Clorofíceas , Microalgas , Biocombustíveis , Biomassa , Cloreto de Sódio/farmacologia , Ácidos Graxos/química , Nutrientes , Salinidade , Nitrogênio/farmacologia , Fósforo/farmacologia , Estresse Salino
2.
Environ Sci Pollut Res Int ; 30(12): 35492-35504, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36735132

RESUMO

This study demonstrates the combination of wastewater treatment and green microalgae cultivation for the low-cost production of lipids as a feedstock for biodiesel production. Three green microalgal species were used: Chlamydomonas reinhardtii, Monoraphidium braunii, and Scenedesmus obliquus. Nutrient, heavy metals and minerals removal, biomass productivity, carbohydrate, protein, proline, lipid, and fatty acids methyl ester (FAMEs) contents besides biodiesel properties were evaluated. The results showed that all algal species were highly efficient and had the potential to reduce nitrate, ammonia, phosphate, sulfate, heavy metals (Zn2+, Cu2+, Mn2+, and Fe2+), calcium, magnesium, sodium, and potassium after 10 days of algal treatment compared to initial concentrations. The removal efficiency of these parameters ranged from 12 to 100%. The growth rates of M. braunii and S. obliquus cultivated in wastewater were significantly decreased compared to the control (synthetic medium). In contrast, C. reinhardtii showed the highest growth rate when cultivated in sewage water. Wastewater could decrease the soluble carbohydrates and protein content in all tested algae and increase the proline content in M. braunii and S. obliquus. In wastewater culture, M. braunii had the highest lipid productivity of 5.26 mg L-1 day-1. The fatty acid profiles of two studied species (C. reinhardtii and M. braunii) revealed their suitability as a feedstock for biodiesel production due to their high content of saturated fatty acids, representing 80.91% and 68.62% of the total fatty acid content, respectively, when cultivated in wastewater. This study indicated that wastewater could be used to modify biomass productivity, lipid productivity, and the quantity of individual fatty acids in some algae that affect biodiesel quality to achieve international biodiesel standards.


Assuntos
Metais Pesados , Microalgas , Águas Residuárias , Biocombustíveis , Biomassa , Ácidos Graxos/metabolismo , Carboidratos , Metais Pesados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...